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NON-LINEAR RENEWAL THEORY FOR LATTICE RANDOM WALKS

1. Introduction

Let {XnIn l be lid with mean p > 0 and variance a2 < o
n 1>

Sn E J=1 Xj, and Zn = Sn + & n where n is, for each n, independent

of the sequence Xn+lXr 2 . . . . Under various assumptions concerning

the nature of the process n Lal and Siegmund ([1], (21) developed

a "renewal theory" for [Z n and demonstrated its usefulness inn

sequential statistical analysis. Their results, however, were

derived under the standing assumption that the random walk S nI be

nonlattice; this is sometimes troublesome in statistical problems

where discrete data is involved.

The purpose of this note is to state the appropriate ana-

logues of the Lai-Siegmund results for the case of a lattice walk

(S n)I and indicate briefly how their proofs should be modified.

A special case of one of these results (Theorem 1) was recently

obtained by Hagwood and Woodroofe ([11) via a rather different

approach; however, for the purposes of sequential statistics, the

more useful result would seem to be Theorem 3, which gives precise

information concerning the hitting times involved.

Acknowledgement. The author has had illuminating conversa-

tions with D. Siegmund and M. Woodroofe on the subject of renewal

theory.

. 1



'!A

2. Statement of Results

We will assume throughout that the walk {S I is supported by
n

the lattice h. 2, and also that

(1) En A L i

where the limit random variable E has a continuous distribution

function. (It is easy to find counterexamples to Theorems 1 and 3

when the distribution of C has discontinuities: for example, when Cn

oscillates between + En and - En for some sequence En 4 0.) In addi-

tion we will use the following notations and conventions:

(2) T - T -min{n:Z >a)

n

T+-mnn: > 0)

g(k) - [ES T]-1 P{ST >hk ; k 1,2,...

G(x) - Etx/hI g(k) ; x >0
k-1

G y(x) - G(x+y) ; < y<h

Hy(x) = EkcZ P{kh+y<t<kh+y+x} 0 < x,y < h

THEOREM 1: Assume that for some 6, 1/2 < 8 < 1,

(3) a- (Ta-- a) -L 0

and that for each n > 0 there exists p > 0 for which
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Then for all xy,t such that 0 < x,y C h and teB, and each

k c (0*1,2,... )

(5) Pfkh <ZT -a <kh+x) -)- H (x) -g(k+l1)

as a 4 through the coset y + hi. Furthermore, as a4 through R~,

(6) P{T a< ap 1 tl -3/2 a1/2)_.0t

(0' is the standardized Gaussian distribution function.) If in addi-

tion to the previous assumptions

(7) PQ~ n:y ; (Sn -n1p) /n1/2 a <) (6 * W

for some two-dimensional distribuion function If, then

(8) Pf kh <Z T- a<kh+x; T a< aA_ + tlA-/ /
a

*g(k +1) Z
jeZ Tj+y<Cj+y+x; C>-t)

as a 4Dthrough y + hl.

It is worth noting that, in contrast to the nonlattice case,

the extra condition (7) is essential to the joint convergence of
(T 1/2 -1 1/2

(Z T a-a) and (a- au- )/a .Moreover, (Z T -a) and (T. -8ai )/a

will In general be asymptotically Independent only when and

(S n -nj)/n 1/2 a are asymptotically independent: that Is, if

T Y.yCw) P(. Y1 f(t) , then

3



(9) P(kh<Z -a<kh+xT <a - +tO -3 /2 a 1 2 }

T -a

a

g(k+l)H (X)t(t)

In many applications, En and (Sn - nj)/n 1 2 a will be highly dependent

(in fact, &n is often a constant multiple of (Sn- ni) 2/n) and so a

limit distribution somewhat different from that given in (9) will

occur.

The analogue of Blackwell's Theorem for the process z I isn

amusing in that the limit is not a Raar measure.

THEOREM 2: Suppose in addition to (1) that there exists 6, 1/2

1/2 < 6 < 1, such that the following three conditions hold:

(10) E1X112/6 <

(11) for each E > 0 P{ >n6 E) <

and for each E > 0 there exists p > 0 such that

np n
(12) E PfI&j -Cn I E) -0 as n -

jin

Then for each x,y such that 0 < x,y < h,

(13) E fP(a< Z <a+x) -H (x)/11

(13) 1- y

as a 4 through the coset y + hl.

Next we give an asymptotic expansion of ETa.
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T"IMRE 3: Assume for some n > 0

(14) P{T<ia) =o(a -1) , a

and also that the sequence {Cn satisfies

(15) E P{sup k-6 ikI >E) < , E > 0
k>n

(16) E < 6 p(j -
I >E) -, 0 as n""

(17) (max 61<_n'+j' 1)n>l is uniformly integrable

Then as a -#-- through y + hl', 0 < y < h,

(18) UETa -a- E + (ES /2ES)- h
a T+ T+

+ x Hy(dx) + o(I)

Random processes of the form Zn - S n + and stopping rules

of the genre T - min~n :Z >a) occur frequently in sequential statis-

tical analysis. An important class of such processes is given by

(19) Zn w ng(Tn

where Yn = (Y1+...+Yn)/n; Yl,...Ynn... is an iid sequence of

p-dimensional random vectors; and g : -* j I 1 is a C2 function with

the property g(EY,) > 0. Expanding g in a 2-term Taylor series about

El1, we find that Zn - Sn + n for a random walk Sn drifting to +

and a sequence Cn converging in law to a continuous distribution

n!



(namely a weighted sum of independent x, variables).

EXAMP~LE: Let Y. ..... be Lid with PfY =1) - P 1 -pfy O01

nj 1

for 0 < p < 1. In order to estimate log(p/q) by an estimator with

preassigned variance a ,Robbins and Siegmund [ 4] defined the stop-

ping rule

(20) T a minfn :0 n (n - O )>na)

where $8 Y 1+ .. + Y no and proposed the estimator

(21) log[(B + l/2) /(Ta - a +1/2)]
a a

They showed that as a + sthis estimator is asymptotically normal

with mean log (p/(l -p)) and variance - 1/a regardless of p, and that

Epa -a/p(l- p). Subsequently, Siegmund [6) noted that as a conse-

quence of the nonlinear renewal theory for nonlattice walks,

(22) p(l- p)E T - a + (2p -l) 2/2 + p(l -p)/2 + o(l)
p a

as a -~aprovided [p1(1-p)1 2is irrational. It now follows from

our Theorem 3 that if [p/(l- p)] 2is rational, [p/(l -p)] 2 n rh in

lowest terms, then

(23) p(l- p)E pTa W a + (1- 2p) 2/2 + p(l- p)/2

fq2 h-1
E Pfkq 2 h-1 + y< C < kq2 h-1 + y + udu+ o(l)

as a t s hrough y + hi; here X 2 1
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3. Proof of Theorem 1

We will present a complete proof only for Theorem 1. Theorem

3 follows from Theorem 1 via Wald's Identity:

UETa = EST
a

- EZT - EET
a a

a + E(ZT -a) -E T

a a

The assumption n - 9 suggests EtT - E , and Theorem I leads one
a

to hope that

lim E(Z - a)
a- O  T a

acy+hZ

exists and is the mean of the limiting distribution recorded in (5).

The details of this argument are so similar to those given in Theorem

3 of Lai and Siegmund [ 3] that we omit them.

Theorem 2 requires considerably more care. However, a proof

can be distilled from the ideas contained in the proof of Theorem 1

and in the papers of Lai and Siegmund, so we refrain from presenting

it.

We will assume for the proof of Theorem I that the span h of

the lattice supporting the random walk {S n  is 1. Now the assumption

a (T - ap -) 0 implies that there is a function p(a) 4 0 as
a

a 4 = such that

(24) P(a- IT
a - ap-11 ?p(a) *( 0
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We are certainly free to let p(a) +0 as slowly as we like; thus we

will assume

(25) p(a)a +

Define

(26) no n 0 (a) =ia-- -p(a)a]

T a =minfn> n 0 (a) : S +C~ > a)

LEMMA 1: Under the conditions (1), (3), and (4),

(27) P{T 0T) 0

and for every n > 0

(28) P{IZ T - S T n (a) I >) T'} 0
a a 0

PROOF: Lemma 3 below guarantees that Pf*Fa [(n0, no +2p(a)a6 ]+ 0.

On the event Tc [no, no+2p (a)a ]a 0

a a n (a)l nET (a)I

< max E1 -

n05j.no+2p(a)a 0

and since p(a) +0, assumption (4) implies

Pa nOS.jn 0+2p(a)a &no

This proves (28).

-7
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Next, fix n > 0; then

(Ta  Ta C (Ta i [no . n 2+2'(a)a

U 0a [ n0 +2p(a)a ])

U fmax 6'j~ >11
n0 j<n0 +2p(a)a 0

U {fanc[no, n0+2p(a)a 1:

Sn + n e[a-2n, a+2])

By (24) P{T a [no , n0 +2p(a)a .1 0; by Lemma 3,

P{T [no , n0 +2p(a)a] 0 and P{.ne[n0 , n0 +2p(a)a]

S + nC [a-2n, a+2n]l is small if a is large and n small; and by
n n 0  6  j ~ ~0 hspoe
assumption (4), P{max 0. This proves

().no jn+2p (a) a 0o(27).

The objective now will be to show that (ST +n O -a) has the
a 0

limiting distribution advertised in (5). Before doing so, we recall

a useful result fr'm standard renewal theory.

LEMNA 2: Let v - v a min{n :S >a} and let yc (0,11. Then as a - oa n

through y + 2r,

(29) P{S - a<x ; Va <a 1 +t 3 /2 a/2
a

4 D(t)G (x)
y

for all x > 0, and all t cR.

9
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For a proof of this result see Siegmund [SI

LEMMA 3: For all x,y with 0 < x,y < 1, and each k c(0,1,2,... 3,if

(1) holds, then

(30) P{St E:~ ()a(k, k + x~l H Wx g(k+l1)

as a -~through y + 7'. Moreover,

(31) PfTa< api1 + tcyll7 3 /2 al1/2} 0(t) as a -

and for all E > 0 there is an A =ACE) and q~ n(E) > 0 such that

a > A implies

(32) P{S+ c [a - T, a +T] for some n > n (a)) < E
0

Finally, if (7) holds, then for x,ye (0,1] and k c{0,1,2 .... 1

(33) Pfk <S Ta+C n -a<k+x ;T a< ap.±1 + .cl- 3/2 a 1/21

-g~k+l) EJ

j~{j+ysZ:5j+y+x; C>-t}

as a -~through y + Z~.

PROOF: It is evident that a - S (a- a + - since

[ap 1 n 0(a) ]a- / -1 + 00. Thus we may use the result of Lemma 2 for

the random walk 0, S n0 (a)+1 - , () S n0()2-Sn0() and the

hitting time V aSnOEn0to estimate P{S Ta+C 0-a zja n

10

.- t
,A .6- 7*- z'



I

(34) P{IP{STa +no -al 0 -G z3 n(z) - E} + 0a 0 (Y-E no)

as a - through y + Z

for every E > 0, where

(35) u u mod 1 for all uER

Since n - , and C has a continuous distribution,
no

(36) EG , (z) EG ,(z) ;

n0

this and (34) prove (30) since

(37) EG *(z) E g(j)
(y-V) j=l

Ez]
E g(J)+g( Ez+lI)P{E(y-)*+z 3 Ez+l 3)
j =1

Ez3
- Z g(j)+g((z+l)H(z- Ez( ])

Similarly we may deduce from Lemma 2

(38 PIP[T+E no 0- a<z;Ta< ap-1 + tall- 3/2 a 1/213 n0

- G y *n) (z) 1 ((Sn0+ n-n 1(n/2> -tul >EI -* 0

0

(as a-' through y + 7)

1*



The reasoning is as follows: the event

(39) (5 +t -a<z; T <aif +tap-3 1  a1 2
Ta n 0 a

= (S n V- S n 0 (a -S n - E )< z

v < (apl - n) + tal[l 1  a12

where

(40) V=VS - minfk :S5 + -Sn > a -S }
a- n0 n+ 0 0 n0- 0

By Lemma 2 and the fact that a - S - E +0
n 0 n0

(41) P{(S 0+ S n 0 (a-Sn 0 - n 0 < z;

V c(a-S n Cn )p-1 + (a -S~ n 6E n.
0 0 0 0 0

-c 1

6 1/2 P1/2122/moreove, sinc (ap 0 ) /n -t0p a na I 0  l

(42 l(aS +t )ll ±) (a-S 1/- )__ -
n 0 n0 0

This and (41) imply (38).

12



If we set z - + in (38), we obtain (31). Furthermore, it

is clear that if (7) holds, then (38) implies (33).

To prove (32) we choose n (0 <ri< 1/2) small enough and A

large enough so that a > A implies

(43) PQ oa CI I < E

for every interval I2n C [0,1] of length 2n (this is possible since

n-4 and t has a continuous distribution). Since the random walk
n

fS I is supported by Z, it is clear that (43) implies (32).
n

Theorem I is an immediate consequence of Lemmas 1 and 3.

13
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